20 Fout! Opmaakprofiel niet gedefinieerd.

To the Point at Warp Nine

Introduction

This examination of teams and how teams make decisions comes from Jim McCarthy, former director of the Microsoft® Visual C++™ program management team at Microsoft, and author of Dynamics of Software Development, and Michele McCarthy, a former Microsoft program manager, who was at the core of CD-ROM technology integration.

In Dynamics of Software Development, Jim McCarthy drew on his programming experience to offer 54 maxims for building great software and delivering it on time.

Those tips, admonitions, and rules were built around the Microsoft product group approach to developing and shipping software, an approach that also inspired the Microsoft Solutions Framework Principles of Application Development process model and team model.

In this article, the McCarthys—who, since publication of Dynamics of Software Development, have left Microsoft to form McCarthy TeamworX—focus on how effective teams make effective decisions.

The TeamworX answer to effective decision-making is an approach called the Decider Protocol. That protocol, along with many other suggestions for improving teams, is offered in this paper as one approach teams might want to consider as a way to improve their decision-making process.

Please note that the inclusion of this paper as a resource does not constitute official endorsement of the use of the Decider Protocol within the context of the Microsoft Solutions Framework.

Team Decision-Making

Quality Decisions Create Quality Teams

The quality of our lives is largely determined by the quality of the choices we make. The more quality of attention, intention, creativity, thought, and focus we put into our choices, the more enriched our lives become. In concrete terms, enriched lives are those that produce the most abundance.

If it is true that the quality of our choices maps to the quality of our lives, it is probably equally true that the quality of team choices maps to the quality of teams—the purposeful collections of individuals. The problem is, we cannot enhance the quality of team life—or of the choices a team makes—until the team’s choices become more vivid.

There is no doubt that teams make choices on a continuous basis. Every meeting, each keystroke, every debug and triage event is a choice or a sequence of choices. The question is whether those choices are vivid enough.

Decisions are especially vivid choices, often recorded and always expressed by subsequent behavior. When we decide things as individuals, we are choosing to do, or not to do, something. We reveal the choice to those affected by it. Teams decide such things as well. Often team members are left in, or leave themselves in, a position where they don’t know what they’ve decided as a team, or when they decided it, or what transaction(s) constituted the decision. This state is a most common one in present-day software teams. Naturally, the lack of precision and clarity greatly complicates subsequent team behavior. If a team has no cognition around the “team decision,” can it be said to have decided at all?

Such a quiescent-to-passive team decision-making practice creates a vacuum in the power system of a software team. While product development teams have all the political and creative power required to ship great software on time, they lack an ex officio group acceptance of power. This greatly interferes with the formation of an acceptable accountability structure.

In a typical development cycle, it is rare for the team to experience even a single moment of group cognition. The individual choices may seem to be aligned, the knowledge may seem to be shared among the individual team members, and a kind of team memory may even exist, at least informally. Yet, the team is lackluster, unenlivened. There is no moment of team-cognition. There is no transition to group self-awareness, no quickening of the new, larger identity. There is no cognitive joy when the-team-as-team decides something.

A team decision is something for which team members are willing to be held individually and communally accountable. But sans any sort of group cognitive function, the group is also deprived of the “aha” moment of simultaneous awareness of an important new idea.

Lacking team self-awareness, the team cannot share vision.

This power vacuum in the decision engine is often symbolically “filled” by the immediate “boss,” or, worse, by some even more remote “boss.” Of course, it cannot be actually filled by the boss, because he or she often has no genuine power in the matter. While it is theoretically possible for the boss to fire or punish, or even to reward, this is not as useful as it might once have been. Among software developers today, immunity from joblessness and the relative financial abundance of their economic environment have removed most, if not all, of the sting from the boss’s threat. Besides, the potential for harm is at best non-motivational to the required creative spirit.

Yet, still the team defers the actual accountability for officially “deciding” to the boss.

This is not merely some vestigial show of respect; it is the unconscious perpetuation of a system of “blame preparedness.” The boss, of course, knows at some level that he or she is utterly dependent on the team. The boss is typically only “deciding” that which the most respected members of the team advise. The team—where all the power, brains, and passions lie—ends up less accountable than a somewhat disconnected boss is.

This system operates like those rare occasions when the British monarchy proclaims actual governmental policy. Only, our development team’s case is more pernicious. We don’t widely acknowledge the actual power of the teams in any kind of forthright way. While many people in the software development arena are completely aware of this, many are not. The unaware become confused and don’t know where to go for what. Who really decides?

The boss’s true job is to make sure the team acknowledges its own power and steps forward to achieve self-determined results and to assume its own accountability for its decisions. The effective boss provides the teams with the technology to achieve group cognition and to make itself go.

The Microsoft Solutions Framework (MSF) provides the type of structural connectedness and process-mindedness that are necessary preliminaries to the concerted application of a team’s mature power. McCarthy TeamworX’s Decider Protocol (Appendix 1) will provide the foundation of a structure to hold a team’s cognitive faculty.

Adopting the Decider Protocol will initiate the process of forming a team identity.

Background: Prescribing Team Practices

Prescriptions for team practices must, in order to be truly general, consistently show superior utility to existing practices in at least four dimensions:

· Across multiple team cultures.

· Across multiple roles on multiple teams.

· Across multiple products and market types.

· Across multiple team sizes.

Both of us (Jim and Michele McCarthy) have shipped many software products. We developed and delivered dozens of releases at Microsoft. Jim, for instance, participated in the creation of at least 15 Visual C++ products during his years at Microsoft. Michele was a program manager of the core CD-ROM technology integration. The experience of developing software at Microsoft was, of course, pivotal for both of us. Microsoft became the earthly vessel of a fanatically results-oriented spirit that, among other things, has largely created the software industry as we know it today. Being managers and leaders at Microsoft was to ride the turbulent waves of truly global change, change that was built on the passions that personal computer technology evokes in so many. The ambiance of efficiency and the most results-oriented culture that either of us had encountered highlighted our own passions and gifts. Microsoft was fortunate at that time to have little of an overall legacy/culture that would resist improvement. Microsoft was where both of us, independently, observed that the team was the software it produced. This gave birth to an idea so important to our subsequent study of teams that we call it our prime directive: “Team = Software.”

The two of us have played every conceivable role on many different software development teams, of many different sizes and shapes. Whether we were program managing, testing, cutting code, doing general management, writing, coaching or marketing, the powerful learning from each release cycle was profound. Each role, no matter at what point we were in our careers, was fully challenging, an exhausting opportunity for learning.

We’ve done products with millions of lines of code and hundreds of features and we’ve done products with a few thousand lines of code and a single feature. We’ve done products for hundreds of thousands of customers and products for only one customer.

But through all of this, even while explicitly thinking hard about it—and on occasion approaching our teams with something like the group cognition we now practice—we were never detached enough to see an obvious, essential truth. We weren’t effectively using the multi-personal resources of the team to make decisions affecting it. This only became obvious later, at the succession of team experiences known as BootCamp (described below).

Few with software development experience would argue against the notion that each product development cycle provides many potentially valuable observations and insights about general team dynamics. All teams creating intellectual property are basically in the insight business. Highly charged personal and group forces are engaged when the collaborative effort takes place largely in the creative organs: imagination, aesthetic sensibility, creativity.

In the special case of developing computer software, maintaining a cognitive overview is vital for determining what to do next. Further, categorizing and disclosing relevant personal state information caused by our interaction with these forces is virtually always required to seize the opportunities and channel the potent energies released in the process. This creates bonds between team members, bonds we refer to as creative intimacy.

Team = Software

Team = Software is a useful equation that provides a conceptual structure for solving the important intellectual property team problems of our age. If Team = Software, then we must admit that you can’t get out of a team what isn’t there to begin with. For instance, if your team is slow to communicate or adopt new ideas, the software you produce will have sub-optimal performance and will use senescent technology. If your team is creative and brilliant, your software will be attractive, insightful, and efficient (brilliant is always efficient). You can’t create something in your software that your team doesn’t already possess.

All too often, it is our impulsive response to team problems to simply “work harder,” or blame one person or group, or slip the date another two months. These reactions don’t address the underlying problems associated with software creation. They don’t address the fact that Team = Software. This formula gives us a way out of all team problems. It teaches us that we can always look to the human potential on the team as a way out of sticky issues. This does not suggest more working. Rather, it suggests more thinking.

Usually, in fact, the formula suggests less working of the type we are used to and more working of a new type.

In the final period of our careers at Microsoft, we worked together on software problems with a Team = Software approach. In 1996, we left Microsoft to accelerate the rate of our experiments along the same line of thinking.

The problem with a typical software schedule is that it can take a team up to two years to go from start to finish on one software version. Millions of dollars are at stake. McCarthy TeamworX compresses the software cycle to a week, including team formation and the creation of shared vision. It has a structure that permits TeamworX members to fully participate while maintaining a more detached point of view.

We accomplished that environment by leading a course called TeamworX BootCamp. At this course, student teams go through a four- to five-day software development cycle simulation. We knew, from our familiarity with the methods that became the MSF, that we could organize and manage an arbitrary team through a cycle. From there, we were eager to try new things and see what would happen.

As might be expected, the effects were cumulative. In other words, we would learn something from the first team and use it to advance the next one. Then, we would learn something entirely new after that, and supply it at the onset to future teams, ad infinitum. Our principles told us, and experimentation proved out, that the learning converged on some simple ideas that were profoundly effective. We honed the ideas as they coalesced by taking the idea from BootCamp #20 and giving it to BootCamp #21, which would build on it and simplify it for BootCamp #22. And, most importantly (and most challenging), we refused to advocate anything we didn’t apply to our own team.

This entire process of the aggregating of intelligence and then using that to aggregate more, and so on, TeamworX refers to as Booting.

Over time, we realized that an arbitrary team can achieve great and timely results on purpose if it uses communications “protocols” such as those TeamworX has isolated and optimized over a series of 43 BootCamps. The core collection of protocols is know as OS/T, the Operating System for Teams.

This paper provides one of the core protocols necessary for optimum team performance, the Decider Protocol.

The Decider is a core protocol because it tends to provide catalytic power to a team. Decider enables a team to move effectively, to work together toward a common vision, and to deliver products en route. Each individual must make decisions on a team constantly. With Decider, the individuals choose to make decisions as one. This surfaces the latent conflicts that are chronically miring the team down.

Decider allows a whole team to make decisions quickly and effectively, usually in much less time than an individual could make the same decision. It allows no escape from team accountability for team results. The only way to move at all using Decider is to move forward. Also, Decider will trigger the adoption of other results-oriented protocols as the problems are brought to the team’s attention by the process of making choices.

Defining Roles

Whenever things seem difficult, people tend to seek a more rigid definition of roles. Those difficulties often arise from the passion or the superior thinking of a person who is not supposed to be thinking in a given domain or to be passionate about another person’s territory.

A negative reaction to such passion or superior thinking is worth eliminating. Rigidity in definition of roles limits quality to the capabilities of each individual. While there is some IQ aggregation in such role-bound system, people within it are mostly invited to cry turf.

TIP: As a way of heading off turf wars, give everybody at a staff meeting a piece of Astroturf, and tell them that it is the only “turf” they will get.

The principle of IQ aggregation requires that passion be respected. On occasion, what looks like passion may really turn out to be neurosis. That can be dealt with, though the topic is beyond the scope of this document. For the most part, if it looks like passion it probably is.

Your personal role on a team should always be to tend to what you care about most. That should be your role even if it is not in your official “charter.” Turflessness and shared accountability increase creative input. In order to benefit from the steady flow of ideas that arise from the turflessness of individual domains, the precise areas where individuals should focus over time must be dynamically decided by the team itself. The optimal team structure is thus an ongoing shifting of focus driven by passion, or, to use another word, caring.

If there are things in the project that nobody on the team cares about, the solution is not to coerce somebody to do those things, but to eliminate those things from the work stream. Don’t do things that aren’t worthy of care.

One caveat is needed. Although constant shifting of areas of focus should be encouraged, the team should not allow excessive starting and then sudden shifting of passion threaten finishing a product. If a person truly cares about a particular element of the product, however, that person most likely will execute a clean finish.

There is another caveat, here. The team has to stay connected, and stay aware of what each individual is doing. Otherwise, neurosis creeps in.

In any event, experience and observation suggest that the biggest waste of team effectiveness is the rigid coupling of passionate individuals with that which they are apathetic about.

Obviously, such a coupling consumes time that is disproportionate to the result. Passion is never without thought, is never headless. Passion never lives without purpose. If a person “runs out of gas” on an item he was once passionate about, the problem is not in his character, but rather in his ability to discern genuine cause for passion or in the psychic blocks that prevent his personal attainment of that which is most valuable to him.

When a person complains repeatedly about a given team behavior, this is an indicator of passion that is being negatively projected. If you feel something about an aspect of the project to the extent that you are willing to whine in the face of others’ inaction, this means that the item in question is really your item. It could be your central concern, in fact, and you would most likely resolve all your issues with it by putting leadership into the system instead of condemnation.

The thing you care about most is always the thing you should do now. When everybody is doing the thing they care about most on the project, chances are good that the product will be great. This approach to role management is infinitely superior to the idea that each person should be the holder of some role and “own” some psychological territory.

Task assignment by current passions is the idealized state of the fully mature team. In the meanwhile, loosely structured roles or lists of functional responsibilities are the best way to create a framework for launching passion-based roles. However, one’s particular list of responsibilities should never be used as the basis for not adopting a superior idea or practice. Lack of resources is not an acceptable response to an idea that ought to be executed.

Like MSF, TeamworX judges that the following team roles serve well:

· Program management

· Testing

· Development

· User education

· Product management

· Logistics management

These roles, as defined by MSF, provide a lucid structure around which to improvise. The roles themselves are really only like the strings of a guitar. They shouldn’t be confused with the music itself. Don’t be afraid to tune the guitar based on the song you need to play right now.

Why MSF?

The beauty of MSF derives from the broad perspective of its creators. On the one hand, they are not in the classic Microsoft product groups (though many have experience there). On the other, the MSF creators typically spend a big chunk of their careers in the field observing and contributing to the development process of tens of thousands of corporations throughout the world.

Frankly, the only way to have crafted something as effective as the MSF is to have melded those two worlds.

The Microsoft product teams themselves can at times be quite incoherent about the causes of whatever success they enjoy or failure they suffer. When not incoherent, they are often mistaken because they lack the detachment discussed earlier. And, like the optimal team organization discussed above, different groups are passionate about different individual qualities in a software team and different aspects of their process.

Although the public profile of MSF has been somewhat muted, it represents Microsoft’s fullest expression of its means of success. It is available to anyone who cares to listen and to pay a few bucks. One would think this openness would detoxify the intermittent rage against success Microsoft often suffers. Via MSF, the true value of Microsoft, its energy, can be reproduced in non-Microsoft entities.

The mission of the MSF should not be confused with pure virtue, of course. Abundance by its nature begets more abundance. However, while Microsoft benefits from MSF’s efforts to systematically codify product group best practices, and to teach the dynamics of creating great software to all comers at an accessible price, it doesn’t have to do so.

That the MSF team is focused on service to actual customers of process architecture and organizational knowledge speaks well of their efforts. This team is explicitly not a part of the classical Microsoft software product producing organization. Since our species is characterized by our distorted self-perceptions, the MSF team can perceive more acutely than the product teams can in identifying causes of success.

It is worth noting that Microsoft has an open loop. The product organization only inconsistently “re-adopts.” Its own abstracted best practices are the most vivid sign of Microsoft’s ongoing vitality. The explosive initial passion and vision of Microsoft’s founders reverberates still in the founding of new, and higher level, Microsofts. The “higher level” is expressed by the simple fact that the Microsoft MSF team is now creating and selling information about creating information to sell. The MSF content is at once less material (a good thing in the information business) and more powerful (because this information can be used to create many energetically cloned, Microsoft-like entities).

In any event, where logic and reason, rather than raw institutional power, are the driving values, teams will ultimately form to exploit and propagate those values. Reason will promote an ecology of ideas, if ideas are the desired output. Teams will generate more and better ideas than individuals. And, in an ecology of ideas supported by well-formed teams, the truth will inevitably be expressed and, should reason prevail, generally adopted.

The seeds of this capability are what the MSF provides its customers. This is especially true in its embrace of the concept of a team of peers.

A Team of Peers

Utter equality is for inert matter, if it is for anything. Certainly, equality does not describe creative beings. Peerdom, as we use the term, offers no rights. We often hear that people have difficulties of unspecified nature when they work with their “peers.” They are referring to people who are either vastly more wise or equally immature. If you look at others as causing you trouble, then one of two things must be true: you either don’t understand the others because of your own immaturity or the troublesome others don’t understand you because of their immaturity. Truly effective peers understand the dynamics of the peer role of peers. Put crudely, sometimes you get (learning) and sometimes you give (teaching). In the early stages of your career, your best goal is to get more and give less. Strangely enough, when you’ve gotten enough at peer level A, then you recycle, beginning with renewed emphasis on giving to peer level A, while getting more from the peer level A, because the peer level itself changes with your changes. That is why they are called peers.

Of course, the only difference between giving and receiving is in the facilitation of the content and not in the actual process, or even the direction of content flow. When you perceive that it doesn’t matter if you are learning about teaching or learning about learning (the difference between giving and receiving), you can be said to have established a new cognitive level. You have “popped a level.” This is a de facto promotion. Of course, your peers may be staggering to the same place, or even hoisting you aboard.

Your rate of learning can be—will be, at times—outpaced by others in the group who begin as your peers. Then your peers become your superiors. When your experience becomes a subset of theirs, they are no longer your peers, regardless of what the organizational chart says. When they understand what you’re experiencing and you don’t understand what they are saying, it is, perhaps, time to focus on your own rate of learning. You should not consider ideas that are new to you new absolutely. There are most likely others who understand them more deeply than you. It was perhaps even their purpose that you achieve awareness of the “new” idea.

Frankly, the idea of an institutionally determined, hierarchical peer is absurd. It is a product of a turf mentality in a seniority system. The MSF notion of peers has to do with equality of access and not the strict right of rank. Peers are people who intermittently teach you and learn from you. If possible, one would always like to associate only with people from whom one can learn. But because there are so few who can teach all at all times, the compromise position to accept is a team of peers.

In any case, it is essential to learn to teach if mutual elevation is the basic ideal of peerdom.

TIP: It is always a bad idea to accept people into your team who will most likely never be in a position to teach you.

The signal characteristic of successful people in the 21st century will be the speed at which they learn and not what they know to begin with. The blistering and accelerating rate of change requires speedy learning and immense presence. You can identify a fast learner by her low resistance to direct and possibly uncomfortable learning. If handed a difficult idea about herself, her response is uniformly to seek additional information and to express possible areas of confusion in a way that invites additional teaching.

A person consistently able to do that is probably already a superior, and not a peer, in the strictest sense of the terms. Naturally, this will depend on the degree of behavioral application. Learning is only complete if actions are aligned with it.

But those who race quickly to the top of an ecology of ideas learn and teach most efficiently. Watch how they do it even if most often you are the teacher. Ask them to teach you how they do that. One goal of the peer game is to convert peers into superiors so that you are constantly surrounded by those from whom you would learn. This behavior will enhance and maintain their ability to teach. In a good peer-to-peer strategy, an inverse competition to supply the most abundance begins.

The key indicator to watch in a peer is his behavioral change as related to the things you suspect he is learning. If his behavior changes disturb you while pleasing others, investigate before judging. There may be something to learn there. Discomfort almost always presages learning. On the other hand, if his behavior pleases you, and you had been hoping he would behave in the way he is, then focus on a different peer. Assume you are just being pleased, and move on to something or someone more challenging.

TIP: Although “peer” and “mirror” can be forced to rhyme, they don’t really. The differences create the peer-ness. Being pleased by a peer is fun; being challenged is rewarding.

Creating an Ecology of Ideas

Two of the most important principles we have found for making an MSF structured team of peers perform great software feats are that:

· The team must value ideas.

· The team must value true authority.

Really, these two principles are interchangeable. A team that values ideas will value true authority and vice-versa. This is because true authority comes from ideas in action, not corporate organizational position.

It is a common holdover from the industrial era to value ideas because of whom they come from. “Bosses,” at the turn of the last century, were the authority figures, and their ideas were implemented by workers. The tendency to maintain a system that awards extra points to a boss idea seems entirely vestigial in the business of ideas. The authoritarian model, although fairly successful (by earlier standards) for building material things, is completely inadequate for software.

Software is intellectual property. Workers who simply follow orders will not create great software, because software is made purely of ideas. There is no need for repetitive motion, for unthinking followers repeating the same task over and over as instructed by the boss. This type of behavior, is, in fact, destructive to a software team. Since Team = Software, teams that behave in this holdover fashion will create repetitive, uncreative, unthinking software—if they can create anything at all.

To successfully implement the MSF team structure, it is imperative to create an “ecology of ideas.” This means that:

· The team does not judge an idea by where it came from.

· The team intentionally wants to express the most ideas possible and then pick the best to implement.

· The team implements only the best ideas.

· The team intentionally creates an environment where it is safe to express all ideas.

· The team views sources of the consistently best ideas as authorities.

So then, a team truly committed to creating great software, delivered on time, will work to move from viewing authority as emanating from position to viewing authority as emanating from ideas. In this way, the team can effectively get the maximum value out of each intellect, aggregate it, and produce the highest quality intellectual property. The best ideas must prevail.

When we speak of an “empowered” team, this is what we mean. An empowered team wants each member to fully express all of his or her ideas, especially the most scary ones, so that it can cherry pick the best ones and implement them.

MSF presupposes you are working on an empowered team. A manager cannot “empower” you. Only you can empower you. You can empower you by (a) personally valuing ideas and honoring true authority; and (b) insisting that any team you are a member of do likewise.

The Centrality and Efficiencies of True Team Unanimity

There are at least three common ways of achieving “consensus” in today’s corporate world. They are (1) no outward resistors, (2) majority rule, and (3) dictation. All of these methods for team decision-making are unsuitable for making software.

No outward resistors is what is typically referred to as consensus-style. There is a record of who did or did not agree with what, and when the agreement occurred. But there is no resolution to unsurfaced conflict. A mere lack of visible resistors does not achieve consistent results in the world of intellectual property because of the imprecise accountability involved, and the ultimate power of sabotage by unsurfaced resisters. Humans are capable of profoundly complex conscious and subconscious acts of sabotage.

Sabotage works like this: If someone disagrees with the plan of record (i.e., the collection of team decisions), there is no legitimate means provided for effectively dealing with it.

Assuming the dissenting person lacks the courage to deal with it via self-initiative, conscious or unconscious sabotage will be the result.

Individuals cannot believe one way and act another over a sustained period of time.

Such sabotage is possible largely because, in the world of ideas and especially the world of software, the resister usually holds a powerful position on the team. At best, the resister can single-handedly grind a project to a halt while the rest of the team complains or waits. At worst, the resister can rally many people on the team to support his rebellious efforts.

It is important to understand the power of resistance in the context of software creation so that you are motivated to move away from the no outward resistors strategy for consensus. If there is resistance on a team, you must get it out in the open so it can be dealt with. Having a policy called “consensus-style” that is really one of no outward resistors won’t work because the rebellion is given power in proportion to the amount of energy that goes into ignoring it. Rebellion can’t be hidden. If you observe a silent resistor, you will see the resistance. If you’re not putting energy into seeing it, you’re putting energy into ignoring it. And of course, ignoring resistance is the same as insisting on it.

TIP: If you tolerate resistance, you insist on it.

If you want to ship great software on time it is paramount that you expose all resistance and deal with it, sooner rather than later.

The majority rule strategy doesn’t work for the very same reasons the no outward resisters approach fails. Those who are in the minority will be vocal or silent resisters. Their issues must be dealt with out in the open. Not dealing with the resistance will invite rebellion and sabotage.

Dictation doesn’t work, either, and again for the same reasons. This is the extreme case of the three. Dictation sets up the “boss” to be the lone voice against a full-out rebellion. This strategy is doomed because it invariably devolves into a fight between the false authority figure, the boss, and the rebels. This is not an environment that breeds creativity, it is an environment that breeds high rates of turnover.

All of this said, what is the solution? The solution is a full consensus—that is, every single team member affirming the team’s decisions. Get everyone’s head in the game. This consensus type is hard to even imagine for those who have not experienced it. It is not common in Western culture to expect full consensus. But the strategy of full consensus is not only possible, it is easier and more efficient than anything less, it yields great results, and it is the mark of a healthy, mature team.

If you still are shaking your head, set aside skepticism for a minute and pretend that unanimity is possible. Imagine a team that is capable of reaching full consensus on every important decision. That team would have the following qualities:

· Virtual infallibility. The IQs of everyone on the team are multiplicative.
 Bad decisions are uncommon since there is so much brain matter being applied to each problem.

· Timeliness. Since everyone is aligned in intention, desire, and action, lateness becomes a diminishing problem. And since everyone honestly agrees on and commits to a schedule, rather than sabotaging a schedule, timeliness is not only a possibility but an intrinsic quality of the team.

· Accountability. Since one persisting “no” vote will stop a proposal completely, people feel able to think about, improve, and tinker with ideas until they truly believe in them. Then, those people specifically say “yes.” They do not work on things they believe are wrong, or hopeless. They are willing to be held accountable.

· Greater focus. Unity eliminates many distractions. There is more time, more creativity, more of everything. The team and the world it moves in are abundant because of the unity and the potential for decisive creativity achieved by the team.

· Less resource-dependent. Since the world is so abundant on an aligned team, achieving goals takes fewer “headcount” than for undecided teams, and the team requires less of everything else.

· Better marketing. Imagine that the marketing people are part of the deciding, aligned team. Your product and your product’s marketing message align from the get-go. There is no endless squabbling between marketing and R&D, but a simple well-supported message that the customer perceives and the product supports.

The strategies that are commonly used today for achieving “apparent” consensus are out of date. Clearly the ideal strategy is one of full consensus for team decision making. Although it seems on the surface that full consensus would be the most difficult approach to making team decisions, it is not so. It is far easier to gain full consensus than to use other decision-making mechanisms, we have witnessed. The Decider Protocol allows teams to reach full consensus time after time, on purpose, more quickly and with better results.

The benefits are clear. Although it is rare that companies actually shoot for full consensus on teams right now, that just gives the teams who decide to implement Decider or other methods for achieving full consensus an awesome advantage in the company and the marketplace.

We’ve observed small teams formed of functionally diverse and even traditionally poorly respected areas, with people from first level to senior executives, basically run their company. These teams are able to achieve this by virtue of their unanimous support of decisions and their ability to quickly react as a single unit. An aligned team of a handful is often the most powerful entity in any organization, given the current state of things. This is true in large companies, too.

Decider Tips and Techniques

Bosses need not worry that they are “giving away” their power.

They are, in fact, actualizing the power that had been preventing them to date from operating at “warp nine.” The team power is always resident in the team whether it is wisely channeled or recognized ex officio. Late software is probably the most vivid power exercise in our industry, usually done by the unconscious or suppressed ambiguities of team members’ connection with each other, with the goal, and with their employer.

Here are some tips:

· Decide to use Decider.

· Remember, Decider decisions are binding only on those who make them.

· Passing is not allowed on a Decider proposal.

· All must choose, and all are accountable.

· Decide before discussing.

Usually, and much to our surprise, the team is in agreement without discussion. Knowing this is a huge thing. It reduces the time consumed by the more typical low-bandwidth half-duplex physically based meetings by 90 percent or better.

Conclusion

The Decider Protocol is a part of a larger system designed to provide effective interpersonal communications for teams like those specified in MSF. This system, OS/T 1.0 by McCarthy TeamworX, will multiply available time on a team of peers to the extent needed. OS/T really begins and ends like the teams it is designed to support, with the capacity to choose wisely and rapidly among alternatives.

In at least one way, Decider is completely portable and independent from OS/T. The application of the Decider Protocol to even the most primitive team structures holding the least mature teams will still have dramatically favorable results immediately. It is simple, elegant, and unbeatable as a means for rapidly and clearly deciding with a group demi-consciousness.

Invariably, Decider will surface the things blocking the team and identify the team’s paralyzing, unarticulated conflicts. Once that occurs, some of the other OS/T protocols will be required for optimal results. And yet, Decider alone will substantially increase results and is both quicker and more accurate than existing “boss” structures, democratic voting systems, voting by behavior, generalized accountability algorithms, and blind obedience to perceived orders.

Appendix 1:

The Decider Protocol with Resolution

Synopsis

Decider is the most efficient way we’ve discovered to make team decisions that are:

· Consistently good.

· Timely.

· Emergent from multiple minds simultaneously.

· Are almost always carried out.

The goal (in cognitive teams) is for all to collaborate with sufficient openness and efficiency so that the product of all the best thinking of all the team members is congealed in the team’s subsequent behavior. Since any “no” vote prevents action until the “no” vote is switched, there is no cause for apprehension over wrong team actions. There is no widespread discomfort over the fullness of accountability for all of the team’s decisions.

Given a clean proposal, Decider provides three possible voting strategies:

1. “Yes”

2. “No”

3. “Support it”

“Support it” can be translated to the following conceptual state: “I can live with this proposal. I mostly believe that it is the best way for us to proceed now. I support it, even though I have some reservations. While I don’t believe I can lead the implementation of this proposal, I do commit not to sabotage it.”

Discussion

In the usual case (for example, when only a small minority of the team votes “no” on a Decider proposal), the term “outliers” is used to refer to the population of those who voted “no” on the current proposal. If there are sufficiently few outliers (for example 2 to 3 on a 10-person team), then Decider invokes Resolution.

The expeditious resolution of many conflicts among otherwise healthy, mature people, is blocked on insufficient group clarity and/or integrity around a somewhat deceivingly simple question: “What does the outlier actually require in order to put aside resistance and to proceed in effective collaboration?”

Resolution is a flexible, highly efficient, requirements-centered conflict-resolver. It is used to help an individual have cognition around his/her motivational foundation. With access to that foundation, one can create a personal accountability structure with external support features. With visibility and structure supporting personal motivations, a person will tend to efficiently fulfill the desires from which motivated behavior comes.

It is worth noting that Resolution is a protocol-generator protocol. The protocols Resolution generates can be applied to both conflicts and (usually unseen) opportunities. As conflicts and opportunities of various types and differing scales emerge within and around a functioning team, TeamworX uses Resolution for the rapid development of our most powerful protocols.

The inner workings of Resolution are quite complicated. At times, Resolution seems unknowable even to its own creators. But there is a single, core theory, which has much promise, that lies at the heart of the Resolution algorithm. If Bill (for example), knows what he wants (let’s call these wants BillzWants), the probability of Bill’s achieving it goes up substantially. This is commonplace wisdom. But the surprising news is that if Bill is in connection with others, and they know precisely what Bill wants (results for Bill will be intensified if the connected ones helped him identify what he wants), and if Bill can readily seek and receive support, then the probability of Bill having BillzWants fulfilled expands exponentially. The total amount of expansion is a function primarily of the total bandwidth invested in BillzWants. “Total bandwidth investments” includes not only those by Bill himself, but also the total bandwidth investments of all of BillzConnects in the seeking, the asking-for, the offering, and the receiving of help toward identifying and achieving BillzWants.

Resolution

In the case of Decider, Resolution proceeds as follows:

The proposer (the person who made the original proposal) quickly leads the team, in a highly structured fashion, to deal with the outliers. The proposer’s goal is straightforward and utterly single-minded: to bring the outliers in.

The following technique is used:

4. The proposer directly asks the outliers to express their requirements for joining the team in this decision. The following question is generally used: "What is it going to take to get you in?"

5. The outliers (generally, one at a time, as chosen by the proposer) are only allowed two connection points :

Any outlier may state, at anytime after the vote, that there is "no way" he or she will be in. This simple declaration means the proposal is now officially dead, and the Decider protocol ceases operative control.

The outliers, when addressed by the proposer, may answer by saying (in a single, short, declarative sentence) precisely what it is they require in order to be "in." In this case, the outliers have thus expressed a contingent commitment to personally see to it that the proposal is transformed by (the actions of the team) into reality. Given what they require from the rest of the team, then (they promise) all resistance from them to the proposal will cease, only to be replaced by their personal affirmation and/or support.

6. As needed and as possible, the proposer creates an offer to the outliers. There are two permissible strategies for re-securing the stability of the “yes” and “support” voters:

If the adaptations to the proposal to accommodate the outliers requirements are minor, the proposer may employ a “head-nodding” or murmuring type common consensus-expression.

Or, the proposer can create—and submit to the team—a somewhat different proposal than the original. This new proposal accounts for the outliers’ newly stated requirements. The team follows with a new vote, and the protocol repeats recursively.

“Yes” voters and “support it” voters are not allowed to speak at all during Resolution. They have no complaint and their listening adds quality to the resolution.

If the outliers change their votes from “no” to “support it” or “yes” (which TeamworX’s fieldwork suggests they will do approximately 80 percent of the time), then the decision to adopt the proposal is committed. It will be acted upon by the team. There is no further communication required to achieve a strong (i.e. unanimous) consensus.

What it Does

Using Resolution:

· Creates efficient decision making.

· Distributes accountability.

· Exposes resistance.

· Identifies crucial elements blocking success.

· Facilitates the concrete expression of the group’s united intention.

When to Use It

Use Resolution whenever you make a suggestion to the team with no clear way of resolving whether it has been fully responded to or even adopted.

Commitments

In order for Resolution to work, team members must commit:

· To actively support the decisions reached.

· To vote their true feelings and beliefs.

· To keep silent if they are “yes” or “live with it” voters.

Decider Protocol

The Decider Protocol works this way:

7. The proposer says, “I propose…” and offers a concise, actionable proposal.

8. The proposer says, “1, 2, 3.”

9. All team members vote simultaneously.

10. “Yes” voters raise their arms or give thumbs up.

11. “No” voters lower their arms or give thumbs down.

12. “Support it” voters move their arms up midway or show a hand flat.

13. If the group has too many “no” voters, or mostly “support it” voters, the proposal is dropped.

14. If there are not too many “no” or “support it” voters, the proposer seeks specific information from only the “no” voters (outliers) by asking, “What’s it going to take to bring you in?”

The Decider Protocol leads in all cases to one of these conclusions:

· Affirmative decision, which means immediate and universal acceptance of the proposed behavior.

· Efficient negotiation, which results in more and, generally, finer proposals created while the team’s inclusion effort proceeds.

· Safety checking, which leads to an immediate, clear, and un-remorseful rejection of an idea too many people think is misguided.

Outlying solo all the way through to the death of a proposal is no fun at all. Such personally expensive and negative steadfastness must arise from a thoroughly motivated, even absolute, conviction. Absolute conviction can really come only from one of two sources—it can be built on solid thought, intuition, or experience, or it can be emerging from a neurotic blindness. If the former is the case, the team is surely enriched by its courageous outlier; while if the latter is true, the team now has a vivid example and the potential for much awareness of one big source of its own communal blindness, about which action can be taken. Either case yields extraordinary profit to the team and those who are dependent on it.

© 1998, 1999. The Decider Protocol is the intellectual property of McCarthy TeamworX, LLC.

For more information about the Decider protocol, or about TeamworX, you may contact:

McCarthy TeamworX
teamworx@teamworx.com
425.487.2467
www.teamworx.com

� If you can’t accept the idea of IQ’s being multiplicative, it would be hard not to accept that they are at least additive. You are still in a much better position than in any other scenario.

� On a team that reaches full consensus for making decisions, the architecture of the product vision is simple and powerful. The team chooses a long-term (well beyond the technical horizon) vision that it is heading toward. Then it sets a short-term vision that is its next product (the next version). The short-term vision must move the team one step toward the long-term vision. Voila! Instant marketing messages! Instant compelling story for the customer!

